
visual_programming Documentation
Release 0.1

Jinesh Kallunkathariyil

Jul 16, 2019

Contents

1 Introduction 1

2 Block diagram description of generated program 3
2.1 Data packing format . 3
2.2 Linked list structure . 3

3 Target program generation and simulation 7
3.1 Code generation . 7
3.2 Just in Time Compilation (JIT) of library . 7
3.3 Dynamic loading of library . 7
3.4 Data sharing from library to the visual environment . 9
3.5 Concurrent programming . 9
3.6 Distributed programming . 9

4 Visual programming environment 11
4.1 Visual blocks . 11

5 Expression parsing 17
5.1 Lexical analyzer . 17
5.2 Regular expression . 17
5.3 Context free grammar . 17
5.4 Earley recognizer and parsing . 17
5.5 Set comprehension (list comprehension) . 17

6 Visual simulation environment 19
6.1 GSL . 19
6.2 GNUPlot . 19
6.3 CERN ROOT . 19

7 Donate 21

i

ii

CHAPTER 1

Introduction

Let’s examine the workings of the program with a simple example as shown in Gif 1.1. In the gif, we have five blocks,
a Main block, Array block, Duplicate block, Expression block and Graph block. The number suffix is used to have a
unique name for every block, in case of multiple blocks of the same type. The main block calls an array block which
creates an array data. This array data is duplicated into two identical arrays by the duplicate block. One data is fed
through an expression block which has a sin(x) expression in this example, produce the sine data. Finally both data
are fed to the graph block and plotted. Thus this program generate a sine(x) data and plot it.

Fig. 1: Gif 1.1: An animated program and data flow, a simple example of visual programming. The Main block is the
entry block, which calls an Array block. The Array block creates an array data and this data is sent to the Duplicate
block. The Duplicate block duplicates the data and the output is two identical arrays. One is fed through an Expression
block, in this case a sin(x) expression. Finally data are displayed in a Graph block.

1

visual_programming Documentation, Release 0.1

2 Chapter 1. Introduction

CHAPTER 2

Block diagram description of generated program

Now that we know what the program does, let’s better understand how the software do it with the help of Figure 1.1.

The entry point to the program is the main block. Main block generates two source codes (main.c and eventLoop.c)
and one header file (eventLoop.h). The main.c has the entry main() function defined. From within the main() function,
it calls exec() defined in the eventLoop.c and pass the name of the next block to be called. In this case, the name of
the next block is Array_0. The exec() function has two jobs, the first is to create a data pack with the name of the next
function block to be called (the first block connected from main block output) and send it to the linked list. The second
job is to call the eventloop thread which loops continuously till the end of the program life.

The event loop continuously scan the linked list for any available data and if it is available, it calls the block (function)
to be executed with the name and pass the packed data.

In our example, each visual block are array block, duplicate block, expression block and graph block.

2.1 Data packing format

2.2 Linked list structure

3

visual_programming Documentation, Release 0.1

Fig. 1: Figure 1.1: A block diagram representation of the workings of the program. Each block is a C function. Main
in the entry function which is defined in main.c. See text for more details.

Fig. 2: Figure 1.2: Data packing format.

4 Chapter 2. Block diagram description of generated program

visual_programming Documentation, Release 0.1

Fig. 3: Figure 1.3: Linked list structure.

2.2. Linked list structure 5

visual_programming Documentation, Release 0.1

6 Chapter 2. Block diagram description of generated program

CHAPTER 3

Target program generation and simulation

In the previous section, we saw an overview of how the generated program works. In this section, we will see the
connection between visual programming environment, simulation and the generated program.

Initially, the user design the program by placing the blocks, connecting them and by editing the configuration and
expressions. When he finishes the design and click the run button, few things happens. First a connection tree is made
from the design, where the blocks are tree nodes with main block is the root of the tree. This connection tree has all
the information about the connections between the blocks. Next, the code for each block is generated.

3.1 Code generation

In code generation face, the C code for each block is generated. These blocks are functions. The expressions on the
blocks are tokenized and parsed and then compiled to the C code (desugared). More on this in later sections. A make
file necessary for the compilation also generated.

3.2 Just in Time Compilation (JIT) of library

Just in time compilation is the compilation of program during the run time. In this case also we have the same situation.
The codes generated from previous section is compiled into a library. THis is the same library which will be used in
the visual programming environment, or on a stand alone application.

3.3 Dynamic loading of library

The next important feature used is the dynamic loading of library. The library compiled in the previous section is
loaded by the environment and executed. It is called dynamic loading because the library is loaded at a time after the
startup of the program.

7

visual_programming Documentation, Release 0.1

Fig. 1: Figure 1.4: Block diagram representation of connection between the visual programming environment and the
generated library. The environment first desugar the expressions to C code and then generate the codes for each block.
They are then compiled in just in time to a library. This library then dynamically loaded and executed. Each block
data are copied into a second linked list for shown in the visual programming environment.

8 Chapter 3. Target program generation and simulation

visual_programming Documentation, Release 0.1

3.4 Data sharing from library to the visual environment

All blocks output data are copied into a second linked list (queue) by the event loop in the library, when the library
called from the visual environment (in the case of stand alone execution of library), no data is copied into the second
linked list. The visual environment has access to this linked list and it access the data in a FIFO manner. All these data
are printed or plotted on corresponding block outputs in the visual environment. In this way, the visual debugging is
simplified and user can easily verify each block output. Even the user can simulate the program flow in a step by step
manner, since the data is still available in the linked list for simulation.

One important advantage is that the same library is used for the visual simulation and also for the stand alone applica-
tion. This will ensure the same working.

3.5 Concurrent programming

Every block function are run in a thread, thus we can say it is a concurrent programming.

3.6 Distributed programming

The visual programming supports also distributed programming, which means run some blocks on one computer and
other blocks on a different computer. The program communicates with ip address and port number. There are two
blocks facilitates this functionality, network server block and network client block. They can be used to send data over
network or for a remote procedure call (RPC).

3.4. Data sharing from library to the visual environment 9

visual_programming Documentation, Release 0.1

10 Chapter 3. Target program generation and simulation

CHAPTER 4

Visual programming environment

In the previous sections, we were showing the visual programming environment as a single block, but there are many
things going on in this block. In this section we will analyse the block in details.

4.1 Visual blocks

The idea of blocks for programming is coming from our nature of explaining or comprehending ideas by writing
boards. This is how we explain the things to another person, our creating our ideas more clear. In this way, we will be
concentrating on what to do rather than how to do. There are many blocks available, let’s go through them now.

4.1.1 Main block

We already saw main block in previous sections. Main block is the entry block in the program as the main function in
the C.

4.1.2 Array block

Array block is used to generate arrays. There are different ways to generate arrays. One is the classical programming
way, where we give the total number of array elements, beginning (included), upper limit (excluded) and the type as
shown in Figure 3.1.

Another way to generate the array is by the set notation (known as set comprehension or list comprehension). One can
define it as, x <- [0,1 .. 99]

4.1.3 Duplicate block

This block duplicates the data into two. For example, if we have one data connection from the array block, we can
duplicate the data and have two similar data outputs from duplicate block.

11

visual_programming Documentation, Release 0.1

Fig. 1: Figure 3.1: Array definition.

Fig. 2: Figure 3.2: Data duplicate block with array block.

4.1.4 Expression block

In expression block, one can define expressions which will act on the input data. For example if one wants the sin(x)
function acting on the input, just write the sin(x) function in the expression input. The output will be a sin(x). One can
also give some functions as an expression, for example the factorial function.

Graph block: A graph block plot the data coming to the input. In Figure 3.3, one can see the graph block connected to
other blocks draw a sine function.

4.1.5 Network server block

A network server block is used for the distributed programming. One can call a remote procedure connected with the
server block. Thus it can be also called RPC. The block receive data through a port and ip address from a Network
client block. In Figure 3.4, a network server block connected to another blocks is shown.

4.1.6 Network client block

A network client block is used to send data over network and it can be considered as the RPC in distributed computing.

In Figure 3.6, shown both network server and client blocks are in action. The client block send data to the server block
and the server block plot the data.

12 Chapter 4. Visual programming environment

visual_programming Documentation, Release 0.1

Fig. 3: Figure 3.3: A graph block connected to the other blocks plotted a sine function

Fig. 4: Figure 3.4: A network server block in action. It receives data sent from network client block and plot it.

Fig. 5: Figure 3.5: A network client block send an array data over ip to specific port.

4.1. Visual blocks 13

visual_programming Documentation, Release 0.1

Fig. 6: Figure 3.6: A network client block and network server block in action.

14 Chapter 4. Visual programming environment

visual_programming Documentation, Release 0.1

4.1.7 State Machine block

4.1.8 Simulation1D block

The idea of simulation1D block is to simulated the nature of data in 1D. For example, if we give a sine wave input,
sphere will oscillate. a simulation1D block is a block with one sphere and two inputs to it. One input is the time and
another input is the position. The position can be assigned either in x - axis or y-axis or z-axis.

Fig. 7: Gif 3.1: An animated program and data flow to show the simulation block. The Main block is the entry block,
which calls an Array block. The Array block creates an array data and this data is sent to the Duplicate block. The
Duplicate block duplicates the data and the output is two identical arrays. One is fed through an Expression block, in
this case a sin(x) expression. Finally data are simulated in a Simulation1D block.

4.1.9 GSLOdeSolver block

4.1. Visual blocks 15

visual_programming Documentation, Release 0.1

16 Chapter 4. Visual programming environment

CHAPTER 5

Expression parsing

The mathematical expressions written on the visual blocks configuration environment has to be compiled into the C
language. For this purpose, first we need to tokenize the expression string with a lexical analyzer, then parse it with
Earley recognizer and parser and then translate into C code. We will go through these steps in the following sections.

5.1 Lexical analyzer

A lexical analyzer is a program that separates the source code into a sequence of lexemes. It reads the input source
code character by character, recognize the lexemes and outputs a sequence of tokens describing the lexemes. A good
read on the lexical analyzer can be found on the link https://hackernoon.com/lexical-analysis-861b8bfe4cb0.

5.2 Regular expression

5.3 Context free grammar

5.4 Earley recognizer and parsing

A good read on the Earley recognizer can be found on Wikipedia link https://en.wikipedia.org/wiki/Earley_parser

5.5 Set comprehension (list comprehension)

17

https://hackernoon.com/lexical-analysis-861b8bfe4cb0
https://en.wikipedia.org/wiki/Earley_parser

visual_programming Documentation, Release 0.1

18 Chapter 5. Expression parsing

CHAPTER 6

Visual simulation environment

6.1 GSL

6.2 GNUPlot

6.3 CERN ROOT

19

visual_programming Documentation, Release 0.1

20 Chapter 6. Visual simulation environment

CHAPTER 7

Donate

21

	Introduction
	Block diagram description of generated program
	Data packing format
	Linked list structure

	Target program generation and simulation
	Code generation
	Just in Time Compilation (JIT) of library
	Dynamic loading of library
	Data sharing from library to the visual environment
	Concurrent programming
	Distributed programming

	Visual programming environment
	Visual blocks

	Expression parsing
	Lexical analyzer
	Regular expression
	Context free grammar
	Earley recognizer and parsing
	Set comprehension (list comprehension)

	Visual simulation environment
	GSL
	GNUPlot
	CERN ROOT

	Donate

